Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

CMM: LiDAR-Visual Fusion with Cross-Modality Module for Large-Scale Place Recognition

2023-12-20
2023-01-7039
LiDAR and camera fusion have emerged as a promising approach for improving place recognition in robotics and autonomous vehicles. However, most existing approaches often treat sensors separately, overlooking the potential benefits of correlation between them. In this paper, we propose a Cross- Modality Module (CMM) to leverage the potential correlation of LiDAR and camera features for place recognition. Besides, to fully exploit potential of each modality, we propose a Local-Global Fusion Module to supplement global coarse-grained features with local fine-grained features. The experiment results on public datasets demonstrate that our approach effectively improves the average recall by 2.3%, reaching 98.7%, compared with simply stacking of LiDAR and camera.
Technical Paper

An Road Boundary Detection Algorithm Based on Radar that Can Improve Multiple-Target Tracking Performance for Autonomous Vehicles on Highway Condition

2023-12-20
2023-01-7042
Radar is playing more and important role in multiple object detection and tracking system due to the fact that Radar can not only determine the velocity instantly but also it is less influenced by environment conditions. However, Radar faces the problem that it has many detection clutter,false alarms and detection results are easily affected by the reflected echoes of road boundary in traffic scenes. Besides this, With the increase of the number of targets and the number of effective echoes, the number of interconnection matrices increases exponentially in joint probability data association, which will seriously affect the real-time and accuracy of high-speed scene algorithms.in the tracking system. So, A method of using millimeter wave radar to detect and fit the boundary guardrail of high-speed road is proposed, and the fitting results are applied to the vehicle detection and tracking system to improve the tracking accuracy.
Technical Paper

A Novelty Multitarget-Multisensor Tracking Algorithm with Out of Sequence Measurements for Automated Driving System on Highway Condition

2023-12-20
2023-01-7041
Automated driving system is a multi-source sensor data fusion system. However different type sensor has different operating frequencies, different field of view, different detection capabilities and different sensor data transition delay. Aiming at these problems, this paper introduces the processing mechanism of out of sequence measurement data into the multi-target detection and tracking system based on millimeter wave radar and camera. After the comparison of ablation experiments, the longitudinal and lateral tracking performance of the fusion system is improved in different distance ranges.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Research on the Control Method of Staggered Parallel Boost Structure in Fuel Cell System

2023-10-30
2023-01-7028
Fuel cells’ soft output characteristics and mismatched voltage levels with subordinate electrical devices necessitate the use of DC/DC converters, which are an important part of the power electronic subsystem of the fuel cell system. The staggered parallel Boost topology is commonly employed in fuel cell DC/DC converters. This paper focuses on the control characteristics of the two-phase interleaved parallel Boost topology in the context of a fuel cell system. Specifically, we derive the small-signal model and output-control transfer function of the topology, and design a controller based on frequency characteristic analysis. Our proposed controller uses a cascaded double-ring structure and supports both constant current and constant voltage switching modes. To evaluate the effectiveness of our proposed control strategy, we conduct simulation and prototype testing.
Technical Paper

Energy Management Based on D4QN Reinforcement Learning for a Series-Parallel Multi-Speed Hybrid Electric Vehicle

2023-10-30
2023-01-7007
Reinforcement learning is a promising approach to solve the energy management for hybrid electric vehicles. In this paper, based on the DQN (Deep Q-Network) reinforcement learning algorithm which is widely used at present, double DQN, dueling DQN and learning from demonstration are integrated; states, actions, rewards and the experience pool based on the characteristics of series-parallel multi-speed hybrid powertrain are designed; the hybrid energy management strategy based on D4QN (Double Dueling Deep Q-Network with Demonstrations) algorithm is established. Based on the training results of D4QN algorithm, multi-parameter analysis under state and action space, HCU (Hybrid control unit) application and MIL (Model in-loop) test research are conducted.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

Research on Fatigue Damage of Independent Suspension Support Structure for a Commercial Vehicle Based on Load Spectrum of Basic Vehicle

2023-04-11
2023-01-0807
In this paper, an equivalent conversion method is proposed to apply the six-dimensional force road spectrum of the four-axle vehicle on the same platform to the three-axle through the axle load comparison. Further, the feasibility of the devolved equivalent conversion method is verified, and the fatigue performance improvement of the wishbone support structure of a commercial vehicle is finally achieved. Specifically, firstly, the load spectrum at each attachment point of the suspension for the three-axle vehicle is obtained through the iteration of the multi-body dynamic model. Furthermore, the finite element model of the suspension for the three-axle vehicle is established; the analysis of fatigue life for the suspension structure is performed by extracting stress amplitude through the multi-axis cyclic counting method and calculating equivalent force amplitude through McDiarmid’s criterion, combined with the SN curve of the material.
Technical Paper

Experimental Analysis and Dynamic Optimization Design of Hinge Mechanism

2023-04-11
2023-01-0777
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses.
Technical Paper

Load Spectrum Extraction of Double-Wishbone Independent Suspension Bracket Based on Virtual Iteration

2023-04-11
2023-01-0774
The displacement of the shaft head fails to be accurately measured while the three-axle heavy-duty truck is driving on the reinforced pavement. In order to obtain accurate fatigue load spectrum of the suspension bracket, the acceleration signals of the shaft heads of the suspension obtained by the reinforced pavement test measurement are virtually iterated as responses. A more accurate model of the rigid-flexible coupled multi-body dynamics (MBD) of the whole vehicle is established by introducing a flexible frame based on the comprehensive modal theory. Furthermore, the vertical displacements of the shaft heads are obtained by the reverse solution of the virtual iterative method with well-pleasing precision. The accuracy of the virtual iteration is verified by comparing the simulation results with the vertical acceleration of the shaft head under the reinforced pavement in the time domain and damage domain.
Technical Paper

The Prediction for Adjustable Ability of Electric Vehicle Aggregator Based on Deep-Belief-Network

2023-04-11
2023-01-0062
In recent years, one of the keys to achieving energy conservation and emission reduction and practicing sustainable development strategies is the wide-area access of large-scale electric vehicles. The charging behavior of large-scale electric vehicles has brought great challenges to the load management and adjustment capacity determination of the power system. Therefore, the prediction of adjustable ability of electric vehicle aggregator based on deep-belief-network is proposed in this paper. First of all, this paper selects the indicators related to the load of the electric bus station: including the arrival time, departure time, and daily mileage of the electric vehicle, from which the SOC variation trend and accurate charging demand of the single electric vehicle are obtained.
Technical Paper

Simplified Modeling of an Innovative Heating Circuit for Battery Pack Based on Traction Motor Drive System

2023-04-11
2023-01-0515
Alternating current (AC) heating is an efficient and homogeneous manner to warm Lithium-ion batteries (LIBs) up. The integrated design of AC heating combined with the motor drive circuit has been studied by many scholars. However, the problems of excessive heating frequency (>1kHz) and zeros torque output of the motor during the heating process have not been solved. High-frequency AC excitation may be detrimental to the battery because the effect of high-frequency AC excitation on the state of health of the battery is unknown. In addition, although the zero-torque output can be realized by controlling the q-axis current to zero, the torque ripple is still difficult to eliminate in a real-world application. To further solve the above problems, the motor’s neutral conductor is pulled out and connected to a large capacitor to increase the current amplitude of the AC heating at low frequencies.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Intersection Traffic Safety Evaluation Using Potential Energy Filed Method

2023-04-11
2023-01-0855
The intersection is recognized as the most dangerous area because of the restricted road structures and indeterminate traffic regulations. Therefore, according to the Vehicle-to-everything (V2X) communication, Intelligent Transportation Systems (ITS), and Digital Twin data, we present a potential energy field method to establish the general characteristics of intersection traffic safety, evaluate the safety situation of intersection and assist intersection traffic participants in passing through the intersection safer and more efficient. The resulting potential energy field method is established by the contour line of traffic participants' potential energy, which is constructed as a superposition of disparate energies, such as boundary potential energy, body potential energy, and velocity potential energy. The intersection traffic safety is evaluated by the potential energy field characteristic of simultaneous intersection traffic participants.
X